GLBRC's Sustainability Research Area


Focusing on one attribute comes at a high price.

At the GLBRC, sustainability researchers are exploring complex issues in agricultural and industrial systems. Research focuses on understanding the attributes and mechanisms responsible for the environmental sustainability of biofuel production systems, such as environmental impacts — many of which may be positive — and socioeconomic factors including incentives and policy options

Learn about the Center's research approach

Sustainability Leadership

Scientific Director, Sustainability Lead

A crop and soil scientist and ecosystem ecologist, Robertson focuses much of his research on the role that agriculture plays in greenhouse gas dynamics, and he is internationally known for his expertise in this area. Robertson has been the director...

Sustainability Lead

Jackson’s program focuses on structure and function of managed, semi-natural and natural grassland ecosystems. Research in Jackson’s grassland ecology lab spans many levels of ecological organization, from grass identification at the DNA level to landscape diversity effects on alternative biofuels...

Project Overview

A device used for measuring plant utilization of solar radiation sits in front of plots of switchgrass, corn and poplar growing in the Great Lake Bioenergy Research Center's fields at the Arlington Agricultural Research Station in Arlington, WI.GLBRC Sustainability research ranges from the microbial community level to regional modeling, and researchers conduct fieldwork at different project sites to reflect this diversity of scale. Small plots at Kellogg Biological Station in Michigan and the Arlington Agricultural Research Station in Wisconsin provide locations for measurement-intensive experiments, while investigators work in larger scale-up fields to collect data on carbon balances and biogeochemical processes. Finally, researchers pursue ecosystem-level biodiversity questions across landscapes, including marginal lands, in central Michigan and Wisconsin.

Specific sustainability projects include:

  • Novel biofuel production systems
  • Microbial-plant interactions for improved biofuel production
  • Biogeochemical responses
  • Biodiversity responses
  • Economic responses
  • Modeling, design and testing of drop-in fuels
  • Process synthesis and technoeconomic evaluation for biomass-to-fuels technologies.


Sustainability Publications

Corn stover ethanol yield as affected by grain yield, Bt trait, and environment

Pavani Tumbalam; Kurt D. Thelen; Andrew Adkins; Bruce Dale; Venkatesh Balan; Christa Gunawan; Juan Gao

More Info


Literature values for glucose release from corn stover are highly variable which would likely result in tremendous variability in bio-refinery ethanol yield from corn stover feedstock. A relatively recent change in United States corn genetics is the inclusion of the Bacillus thuringiensis (Bt) trait, which now accounts for three-fourths of all US planted corn acreage. The objective of this study was to evaluate the effect of corn grain yield, inclusion of the Bt trait, and location environment on corn stover quality for subsequent ethanol conversion. Two hybrid pairs (each having a Bt and non-Bt near-isoline) were analyzed giving a total of 4 hybrids. In 2010 and 2011, field plots were located in Michigan at four lat- itudinal differing locations in four replicated plots at each location. Stover composition and enzymatic digestibility was analyzed and estimated ethanol yield (g g 1) was calculated based on hydrolyzable glucan and xylan levels. Analysis showed that there were no significant differences in total glucose or xylose levels nor in enzymatically hydrolyzable glucan and xylan concentrations between Bt corn stover and the non-Bt stover isolines. Regression analyses between corn grain yield (Mg ha 1) and corn stover ethanol yield (g g 1) showed an inverse relationship indicative of a photosynthate source-sink rela- tionship. Nevertheless, the quantity of stover produced was found to be more critical than the quality of stover produced in maximizing potential stover ethanol yield on a land area basis.

Cover crops have neutral effects on predator communities and biological control services in annual cellulosic bioenergy cropping systems

Aaron F. Fox; Tania N. Kim; Christine A. Bahlai; Megan Woltz; Claudio Gratton; Douglas A. Landis

More Info


Maize stover is beginning to be used as a cellulosic biofuel feedstock in the Midwestern United States; however, there are concerns that stover removal could result in increased soil erosion and loss of soil organic matter. Use of a winter cover crop following maize harvest has the potential to mitigate these impacts and may have additional benefits by providing continuous living cover in annual crop habitats leading to changes in insect predator communities and increased biocontrol services. However, cover crops may also be harvested in cellulosic biofuel systems, adding a disturbance event that may negatively affect biocontrol. We contrasted insect predator communities and their impacts in four potential bioenergy cropping systems in Michigan and Wisconsin (USA) during the 2013 and 2014 growing seasons. Two annual maize systems were harvested for grain and stover; one maize system included a cereal rye/Austrian winter pea cover crop. Two perennial systems, switchgrass and a mixed prairie grasses and forbs, were harvested in the fall for biomass. Predatory insect abundance and diversity were lower in both annual cropping systems than in the perennial cropping systems and the inclusion of the cover crop did not significantly alter these responses. Similarly, removal of sentinel insect egg prey was also lower in the annual versus perennial cropping systems, with no significant influence of cover crop. We also explored the potential for cover crops to harbor prey populations in the spring that might encourage oviposition by mobile predators and potentially lead to local population sources or sinks of predators depending on the timing and effect of cover crop harvest. We found that existing predator communities in the cover crop treatments effectively suppressed aphid population growth, limiting their attractiveness to mobile predators. While we found no significant positive or negative impacts of this cover crop system on biocontrol services, bioenergy cover cropping systems could be managed to increase multiple ecosystem services by altering cover crop identity, or timing of planting and harvest.

Dynamics of biomass partitioning, stem gene expression, cell wall biosynthesis, and sucrose accumulation during development of Sorghum bicolor

Brian McKinley; William Rooney; Curtis Wilkerson; John Mullet

More Info


Biomass accumulated preferentially in leaves of the sweet sorghum Della until floral initiation, then stems until anthesis, followed by panicles until grain maturity, and apical tillers. Sorghum stem RNA-seq transcriptome profiles and composition data were collected for ~100 days of development beginning at floral initiation. The analysis identified >200 differentially expressed genes involved in stem growth, cell wall biology, and sucrose accumulation. Genes encoding expansins and xyloglucan endotransglucosylase/hydrolases were differentially expressed in growing stem internodes. Genes encoding enzymes involved in the synthesis of cellulose, lignin, and glucuronoarabinoxylan were expressed at elevated levels in stems until ~7 days before anthesis and then down regulated. CESA genes involved in primary and secondary cell wall synthesis showed different temporal patterns of expression. Following floral initiation, the level of sucrose and other non-structural carbohydrates increased to ~50% of the stem's dry weight. Stem sucrose accumulation was inversely correlated with >100-fold down-regulation of SbVIN1, a gene encoding a vacuolar invertase. Accumulation of stem sucrose was also correlated with cessation of leaf and stem growth at anthesis, decreased expression of genes involved in stem cell wall synthesis, and ~10-fold lower expression of SbSUS4, a gene encoding sucrose synthase that generates UDP-glucose from sucrose for cell wall biosynthesis. Genes for mixed linkage glucan synthesis (CSLF) and turnover were expressed at high levels in stems throughout development. Overall, the stem transcription profile resource and the genes and regulatory dynamics identified in this study will be useful for engineering sorghum stem composition for improved conversion to biofuels and bioproducts. This article is protected by copyright. All rights reserved.