Plants

Share

GLBRC's Plants Research Area

Plants

At the GLBRC, Plants researchers are developing the next generation of biomass-trait-improved crops. Because crops will continue to be grown for food and feed in the future, research focused on enhancing plants with desirable energy traits must be pursued without sacrificing grain yield and quality.

Learn about the Center's research approach

Plants Leadership

Plants Lead

Ralph’s program is aimed at decreasing plant cell wall recalcitrance to processing and improving plant value to the biorefinery, largely by: detailing lignin structure, chemistry, and reactions; delineating the effects of perturbing lignin biosynthetic pathways; ‘redesigning’ lignins in planta to...

Plants Lead

Brandizzi is a professor in the Michigan State University-U.S. Department of Energy (MSU-DOE) Plant Research Laboratory, and brings over 15 years of academic research experience to her role at GLBRC. Prior to coming to Michigan, Brandizzi was an associate professor...

Project Overview

Primary root of live Arabidopsis thaliana seedlings grown with green fluorescence-tagged monolignol probeGLBRC Plants research is highly genomics-focused. Although most plants used in agriculture have been selected for improved production of food or fiber, future bioenergy crops will have different characteristics, including high-energy yield per hectare, ease of conversion to fuels, and agricultural sustainability. Thus, while the Center's long-term efforts focus primarily on dedicated bioenergy crops such as perennial grasses and short-rotation woody species, improving basic traits in all biomass-relevant crops including the grain annuals is a priority.

Plants research projects fall under three general categories:

  • Reducing lignocellulosic biomass recalcitrance through plant cell wall modification
  • Improving the value of the biomass grown for bioenergy production
  • Integrating these and other beneficial traits into bioenergy crops that exhibit improved nutrient use and stress tolerance for sustainable, perennialized production

Plants Publications

Nannochloropsis, a rich source of diacylglycerol acyltransferases for engineering of triacylglycerol content in different hosts

Krzysztof Zienkiewicz; Agnieszka Zienkiewicz; Eric Poliner; Zhi-Yan Du; Katharina Vollheyde; Cornelia Herrfurth; Sofia Marmon; Eva M. Farre; Ivo Feussner; Christoph Benning

More Info

2017

Background: Photosynthetic microalgae are considered a viable and sustainable resource for biofuel feedstocks, because they can produce higher biomass per land area than plants and can be grown on non-arable land. Among many microalgae considered for biofuel production, Nannochloropsis oceanica (CCMP1779) is particularly promising, because following nutrient deprivation it produces very high amounts of triacylglycerols (TAG). The committed step in TAG synthesis is catalyzed by acyl-CoA: diacylglycerol acyltransferase (DGAT). Remarkably, a total of 13 putative DGAT-encoding genes have been previously identified in CCMP1779 but most have not yet been studied in detail. Results: Based on their expression profile, six out of 12 type-2 DGAT-encoding genes (NoDGTT1-NoDGTT6) were chosen for their possible role in TAG biosynthesis and the respective cDNAs were expressed in a TAG synthesis-deficient mutant of yeast. Yeast expressing NoDGTT5 accumulated TAG to the highest level. Over-expression of NoDGTT5 in CCMP1779 grown in N-replete medium resulted in levels of TAG normally observed only after N deprivation. Reduced growth rates accompanied NoDGTT5 over-expression in CCMP1779. Constitutive expression of NoDGTT5 in Arabidopsis thaliana was accompanied by increased TAG content in seeds and leaves. A broad substrate specificity for NoDGTT5 was revealed, with preference for unsaturated acyl groups. Furthermore, NoDGTT5 was able to successfully rescue the Arabidopsis tag1-1 mutant by restoring the TAG content in seeds. Conclusions: Taken together, our results identified NoDGTT5 as the most promising gene for the engineering of TAG synthesis in multiple hosts among the 13 DGAT-encoding genes of N. oceanica CCMP1779. Consequently, this study demonstrates the potential of NoDGTT5 as a tool for enhancing the energy density in biomass by increasing TAG content in transgenic crops used for biofuel production.

Natural acetylation impacts carbohydrate recovery during deconstruction of Populus trichocarpa wood

Amanda M. Johnson; Hoon Kim; John Ralph; Shawn D. Mansfield

More Info

2017

Background Significant variation in the inherent degree of acetylation naturally exists in the xylem cell walls of Populus trichocarpa. During pretreatment, endogenous acetate hydrolyzes to acetic acid that can subsequently catalyze the breakdown of poplar wood, increasing the efficiency of biomass pretreatment. Results Poplar genotypes varying in cell wall composition were pretreated in 0.3% H2SO4 in non-isothermal batch reactors. Acetic acid released from the wood was positively related to sugar release during pretreatment (R ≥ 0.9), and inversely proportional to the lignin content of the poplar wood (R = 0.6). Conclusion There is significant variation in wood chemistry among P. trichocarpa genotypes. This study elucidated patterns of cell wall deconstruction and clearly links carbohydrate solubilization to acetate release. Tailoring biomass feedstocks for acetate release could enhance pretreatment efficiencies.

Production of putative diterpene carboxylic acid intermediates of triptolide in yeast

Victor Forman; Roberta Callari; Christophe Folly; Harald Heider; Björn Hamberger

More Info

2017

The development of medical applications exploiting the broad bioactivities of the diterpene therapeutic triptolide from Tripterygium wilfordii is limited by low extraction yields from the native plant. Furthermore, the extraordinarily high structural complexity prevents an economically attractive enantioselective total synthesis. An alternative production route of triptolide through engineered Saccharomyces cerevisiae (yeast) could provide a sustainable source of triptolide. A potential intermediate in the unknown biosynthetic route to triptolide is the diterpene dehydroabietic acid. Here, we report a biosynthetic route to dehydroabietic acid by transient expression of enzymes from T. wilfordii and Sitka spruce (Picea sitchensis) in Nicotiana benthamiana. The combination of diterpene synthases TwTPS9, TwTPS27, and cytochromes P450 PsCYP720B4 yielded dehydroabietic acid and a novel analog, tentatively identified as ‘miltiradienic acid’. This biosynthetic pathway was reassembled in a yeast strain engineered for increased yields of the pathway intermediates, the diterpene olefins miltiradiene and dehydroabietadiene. Introduction in that strain of PsCYP720B4 in combination with two alternative NADPH-dependent cytochrome P450 reductases resulted in scalable in vivo production of dehydroabietic acid and its analog from glucose. Approaching future elucidation of the remaining biosynthetic steps to triptolide, our findings may provide an independent platform for testing of additional recombinant candidate genes, and ultimately pave the way to biotechnological production of the high value diterpenoid therapeutic.

Scaled-up production of poacic acid, a plant-derived antifungal agent

Fengxia Yue; Ruili Gao; Jeff S. Piotrowski; Mehdi Kabbage; Fachuang Lu; John Ralph

More Info

2017

Silencing CHALCONE SYNTHASE in maize impedes the incorporation of tricin Into lignin and increases lignin content

Nubia B. Eloy; Wannes Voorend; Wu Lan; Marina de Lyra So Saleme; Igor Cesarino; Ruben Vanholme; Rebecca A. Smith; Geert Goeminne; Andreas Pallidis; Kris Morreel; José Nicomedes Jr.; John Ralph; Wout Boerjan

More Info

2017

Lignin is a phenolic heteropolymer that is deposited in secondary-thickened cell walls where it provides mechanical strength. Recent structural characterization of cell walls from monocot species showed that the flavone tricin is part of the native lignin polymer where it is hypothesized to initiate lignin chains. In this study, we investigated the consequences of altered tricin levels on lignin structure and cell wall recalcitrance by phenolic profiling, NMR, and saccharification assays of the naturally silenced maize C2-Idf mutant, defective in the CHALCONE SYNTHASE C2 gene. We show that the C2-Idf mutant produces highly reduced levels of apigenin- and tricin-related flavonoids, resulting in a strongly reduced incorporation of tricin into the lignin polymer. Moreover, the lignin was enriched in beta-beta and beta-5 units, lending support to the contention that tricin acts to initiate lignin chains and that, in the absence of tricin, more monolignol dimerization reactions occur. In addition, the C2-Idf mutation resulted in strikingly higher Klason lignin levels in the leaves. As a consequence, the leaves of C2-Idf mutants had significantly reduced saccharification efficiencies as compared to those of control plants. These findings are instructive for lignin engineering strategies to improve biomass processing and biochemicals production.

Pages