Plants

Share

GLBRC's Plants Research Area

Plants

At the GLBRC, Plants researchers are developing the next generation of biomass-trait-improved crops. Because crops will continue to be grown for food and feed in the future, research focused on enhancing plants with desirable energy traits must be pursued without sacrificing grain yield and quality.

Learn about the Center's research approach

Plants Leadership

Plants Lead

Ralph’s program is aimed at decreasing plant cell wall recalcitrance to processing and improving plant value to the biorefinery, largely by: detailing lignin structure, chemistry, and reactions; delineating the effects of perturbing lignin biosynthetic pathways; ‘redesigning’ lignins in planta to...

Plants Lead

Brandizzi is a professor in the Michigan State University-U.S. Department of Energy (MSU-DOE) Plant Research Laboratory, and brings over 15 years of academic research experience to her role at GLBRC. Prior to coming to Michigan, Brandizzi was an associate professor...

Project Overview

Primary root of live Arabidopsis thaliana seedlings grown with green fluorescence-tagged monolignol probeGLBRC Plants research is highly genomics-focused. Although most plants used in agriculture have been selected for improved production of food or fiber, future bioenergy crops will have different characteristics, including high-energy yield per hectare, ease of conversion to fuels, and agricultural sustainability. Thus, while the Center's long-term efforts focus primarily on dedicated bioenergy crops such as perennial grasses and short-rotation woody species, improving basic traits in all biomass-relevant crops including the grain annuals is a priority.

Plants research projects fall under three general categories:

  • Reducing lignocellulosic biomass recalcitrance through plant cell wall modification
  • Improving the value of the biomass grown for bioenergy production
  • Integrating these and other beneficial traits into bioenergy crops that exhibit improved nutrient use and stress tolerance for sustainable, perennialized production

Plants Publications

2D NMR characterization of wheat straw residual lignin after dilute acid pretreatment with different severities

Anders Jensen; Yohanna Cabrera; Chia-Wen Hsieh; John Nielsen; John Ralph; Claus Felby

More Info

2017

The chemical characteristics of wheat straw lignin pretreated under dilute acid conditions were compared. After pretreatment, the lignin content of the solid residue increased as temperature increased (from 160°C to 190°C) and with the amount of acid added (0%, 0.25%, or 1% H2SO4). Pretreatment at 190°C with increasing concentrations of acid catalyst led to a decrease in glucan content, whereas the glucan content remained almost constant at 160°C pretreatment regardless of the acid concentration. The xylan content decreased in proportion with increased acid concentration and pretreatment temperature. The residual lignins were characterized by solution-state, two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy and size-exclusion chromatography (SEC). Results showed that more ether bonds were cleaved with increased pretreatment temperature and lower pH, whereas the levels of carbon-carbon bonded structures (e.g. phenylcoumaran and resinol units) were hardly affected. With a pretreatment of 160°C and 1% H2SO4, the majority of the β-O-4 bonds were cleaved. In addition, lignin depolymerization was more evident than repolymerization at higher pretreatment temperatures and lower pH. Documenting lignin structural changes as a function of pretreatment parameters provides a tool for biorefineries to gain flexibility in processing parameters with full control over the final properties of the products.

Biochemical transformation of lignin for deriving valued commodities from lignocellulose

Daniel L. Gall; J. Ralph; Timothy J. Donohue; Daniel R. Noguera

More Info

2017

The biochemical properties of lignin present major obstacles to deriving societally beneficial entities from lignocellulosic biomass, an abundant and renewable feedstock. Similar to other biopolymers such as polysaccharides, polypeptides, and ribonucleic acids, lignin polymers are derived from multiple types of monomeric units. However, lignin’s renowned recalcitrance is largely attributable to its racemic nature and the variety of covalent inter-unit linkages through which its aromatic monomers are linked. Indeed, unlike other biopolymers whose monomers are consistently inter-linked by a single type of covalent bond, the monomeric units in lignin are linked via non-enzymatic, combinatorial radical coupling reactions that give rise to a variety of inter-unit covalent bonds in mildly branched racemic polymers. Yet, despite the chemical complexity and stability of lignin, significant strides have been made in recent years to identify routes through which valued commodities can be derived from it. This paper discusses emerging biological and biochemical means through which degradation of lignin to aromatic monomers can lead to the derivation of commercially valuable products.

Brachypodium as an experimental system for the study of stem parenchyma biology in grasses

Jacob Krüger Jensen; Curtis Gene Wilkerson

More Info

2017

Stem parenchyma is a major cell type that serves key metabolic functions for the plant especially in large grasses, such as sugarcane and sweet sorghum, where it serves to store sucrose or other products of photosynthesis. It is therefore desirable to understand the metabolism of this cell type as well as the mechanisms by which it provides its function for the rest of the plant. Ultimately, this information can be used to selectively manipulate this cell type in a controlled manner to achieve crop improvement. In this study, we show that Brachypodium distachyon is a useful model system for stem pith parenchyma biology. Brachypodium can be grown under condition where it resembles the growth patterns of important crops in that it produces large amounts of stem material with the lower leaves senescing and with significant stores of photosynthate located in the stem parenchyma cell types. We further characterize stem plastid morphology as a function of tissue types, as this organelle is central for a number of metabolic pathways, and quantify gene expression for the four main classes of starch biosynthetic genes. Notably, we find several of these genes differentially regulated between stem and leaf. These studies show, consistent with other grasses, that the stem functions as a specialized storage compartment in Brachypodium.

Pages