Deconstruction

Share

GLBRC's Deconstruction Research Area

Deconstruction

GLBRC's Deconstruction Lead takes top academic slot

Located at the intersection of the U.S.’s agricultural heartland and its northern forests, the GLBRC has access to a rich diversity of raw biomass for study. The Center's Deconstruction research focuses on identifying the best combinations of enzymes, chemicals, and physical processing methods for enhancing the digestibility of specific biomass sources.

Learn about the Center's research approach

Deconstruction Leadership

Deconstruction Lead

Dale is an expert on making ethanol from cellulose, plant stalks, grass, corn cobs and other woody plant parts and has developed a patented process called ammonia fiber expansion (AFEXTM), which makes the breakdown of cellulose more efficient, thus tackling...

Deconstruction Lead

Fox's research goals are to define the structure and the reactivity of the active site diiron center, to probe the catalytic contributions of the active site protein residues and to determine the consequences of protein-protein and protein-substrate interactions on the...

Project Overview

A biofuels reactor designed to produce ethanol at Michigan State University's Biomass Conversion Research Lab (BCRL)GLBRC Deconstruction research maintains a focus on the entire biofuels production pipeline: in addition to identifying and improving natural cellulose-degrading enzymes extracted from diverse environments, researchers apply unique biomass pretreatment technologies—such as ammonia fiber expansion (AFEX™), alkaline hydrogen peroxide (AHP), and extractive ammonia (EA)—that enable conversion technologies to maximize plant biomass utilization.. Researchers also explore strategies to add value to these processes by developing co-products from materials that would otherwise be treated as waste, such as lignin. Specific deconstruction projects include:

  • Pretreatment effects on biomass, alkaline peroxide pretreatment, fuel production from alkaline-pretreated biomass
  • Optimization of enzymes for biomass conversion, discovery of natural cellulolytic microbes, identification of novel microbial enzymes, and combinatorial discovery of enzymes and proteins

Deconstruction Publications

Corn stover ethanol yield as affected by grain yield, Bt trait, and environment

Pavani Tumbalam; Kurt D. Thelen; Andrew Adkins; Bruce Dale; Venkatesh Balan; Christa Gunawan; Juan Gao

More Info

2016

Literature values for glucose release from corn stover are highly variable which would likely result in tremendous variability in bio-refinery ethanol yield from corn stover feedstock. A relatively recent change in United States corn genetics is the inclusion of the Bacillus thuringiensis (Bt) trait, which now accounts for three-fourths of all US planted corn acreage. The objective of this study was to evaluate the effect of corn grain yield, inclusion of the Bt trait, and location environment on corn stover quality for subsequent ethanol conversion. Two hybrid pairs (each having a Bt and non-Bt near-isoline) were analyzed giving a total of 4 hybrids. In 2010 and 2011, field plots were located in Michigan at four lat- itudinal differing locations in four replicated plots at each location. Stover composition and enzymatic digestibility was analyzed and estimated ethanol yield (g g 1) was calculated based on hydrolyzable glucan and xylan levels. Analysis showed that there were no significant differences in total glucose or xylose levels nor in enzymatically hydrolyzable glucan and xylan concentrations between Bt corn stover and the non-Bt stover isolines. Regression analyses between corn grain yield (Mg ha 1) and corn stover ethanol yield (g g 1) showed an inverse relationship indicative of a photosynthate source-sink rela- tionship. Nevertheless, the quantity of stover produced was found to be more critical than the quality of stover produced in maximizing potential stover ethanol yield on a land area basis.

Design of cellulosic ethanol supply chains with regional depots

Rex T.L. Ng; Christos T. Maravelias

More Info

2016

The conversion of lignocellulosic biomass to fuels has the potential to reduce our dependence on fossil fuels. To ensure biomass supply meets biofuel demand, it is necessary to have an effective biomass supply network. Toward this end, the concept of regional biomass processing depot, where biomass is pretreated and/or densified to a higher density intermediate, has been introduced to improve the performance of supply network in terms of costs and emissions. In this article, we develop a mixed-integer nonlinear programming model for the capacity and inventory planning problem of biofuels supply chain including depots. Importantly, the proposed model accounts for variable locations of depots, which is a subject that has not been studied in the literature. In addition, our models account for biomass selection and allocation, technology selection and capacity planning at depots and biorefineries, and biomass seasonality.

Effective alkaline metal-catalyzed oxidative delignification of hybrid poplar

Aditya Bhalla; Namita Bansal; Ryan J. Stoklosa; Mackenzie Fountain; John Ralph; David B. Hodge; Eric L. Hegg

More Info

2016

Strategies to improve copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment of hybrid poplar were investigated. These improvements included a combination of increasing hydrolysis yields, while simultaneously decreasing process inputs through (i) more efficient utilization of H2O2 and (ii) the addition of an alkaline extraction step prior to the metal-catalyzed AHP pretreatment. We hypothesized that utilizing this improved process could substantially lower the chemical inputs needed during pretreatment.

Evolution and ecology of Actinobacteria and their bioenergy applications

Gina R. Lewin; Camila Carlos; Marc G. Chevrette; Heidi A. Horn; Brandon R. McDonald; Robert J. Stankey; Brian G. Fox; Cameron R. Currie

More Info

2016

Pages