Plants

Share

GLBRC's Plants Research Area

Plants

At the GLBRC, Plants researchers are developing the next generation of biomass-trait-improved crops. Because crops will continue to be grown for food and feed in the future, research focused on enhancing plants with desirable energy traits must be pursued without sacrificing grain yield and quality.

Learn about the Center's research approach

Plants Leadership

Plants Lead

Ralph’s program is aimed at decreasing plant cell wall recalcitrance to processing and improving plant value to the biorefinery, largely by: detailing lignin structure, chemistry, and reactions; delineating the effects of perturbing lignin biosynthetic pathways; ‘redesigning’ lignins in planta to...

Plants Lead

Brandizzi is a professor in the Michigan State University-U.S. Department of Energy (MSU-DOE) Plant Research Laboratory, and brings over 15 years of academic research experience to her role at GLBRC. Prior to coming to Michigan, Brandizzi was an associate professor...

Project Overview

Primary root of live Arabidopsis thaliana seedlings grown with green fluorescence-tagged monolignol probeGLBRC Plants research is highly genomics-focused. Although most plants used in agriculture have been selected for improved production of food or fiber, future bioenergy crops will have different characteristics, including high-energy yield per hectare, ease of conversion to fuels, and agricultural sustainability. Thus, while the Center's long-term efforts focus primarily on dedicated bioenergy crops such as perennial grasses and short-rotation woody species, improving basic traits in all biomass-relevant crops including the grain annuals is a priority.

Plants research projects fall under three general categories:

  • Reducing lignocellulosic biomass recalcitrance through plant cell wall modification
  • Improving the value of the biomass grown for bioenergy production
  • Integrating these and other beneficial traits into bioenergy crops that exhibit improved nutrient use and stress tolerance for sustainable, perennialized production

Plants Publications

Winter memory throughout the plant kingdom: different paths to flowering

Frédéric Bouché; Daniel P. Woods; Richard M. Amasino

More Info

2017

14-3-3 protein mediates plant seed oil biosynthesis through interaction with AtWRI1

Wei Ma; Que Kong; Jenny J. Mantyla; Yang Yang; John B. Ohlrogge; C. Benning

More Info

2016

Plant 14-3-3 proteins are phosphopeptide-binding proteins, belonging to a large family of proteins involved in numerous physiological processes including primary metabolism, although knowledge about the function of 14-3-3s in plant lipid metabolism is sparse. WRINKLED1 (WRI1) is a key transcription factor that governs plant oil biosynthesis. At present, AtWRI1-interacting partners remain largely unknown. Here, we show that 14-3-3 proteins are able to interact with AtWRI1, both in yeast and plant cells. Transient co-expression of 14-3-3- and AtWRI1-encoding cDNAs led to increased oil biosynthesis in Nicotiana benthamiana leaves. Stable transgenic plants overproducing a 14-3-3 protein also displayed increased seed oil content. Co-production of a 14-3-3 protein with AtWRI1 enhanced the transcriptional activity of AtWRI1. The 14-3-3 protein was found to increase the stability of AtWRI1. A possible 14-3-3 binding motif was identified in one of the two AP2 domains of AtWRI1, which was also found to be critical for the interaction of AtWRI1 with an E3 ligase linker protein. Thus, we hypothesize a regulatory mechanism by which the binding of 14-3-3 to AtWRI1 interferes with the interaction of AtWRI1 and the E3 ligase, thereby protecting AtWRI1 from degradation. Taken together, our studies identified AtWRI1 as a client of 14-3-3 proteins and provide insights into a role of 14-3-3 in mediating plant oil biosynthesis. This article is protected by copyright. All rights reserved.

3D sorghum reconstructions from depth images identify QTL regulating shoot architecture

Ryan F. McCormick; Sandra K. Truong; John E. Mullet

More Info

2016

Dissecting the genetic basis of complex traits is aided by frequent and non-destructive measurements. Advances in range imaging technologies enable the rapid acquisition of three-dimensional (3D) data from an imaged scene. A depth camera was used to acquire images of Sorghum bicolor, an important grain, forage, and bioenergy crop, at multiple developmental timepoints from a greenhouse-grown recombinant inbred line population. A semi-automated software pipeline was developed and used to generate segmented, 3D plant reconstructions from the images. Automated measurements made from 3D plant reconstructions identified quantitative trait loci (QTL) for standard measures of shoot architecture such as shoot height, leaf angle, and leaf length and for novel composite traits such as shoot compactness. The phenotypic variability associated with some of the QTL displayed differences in temporal prevalence; for example, alleles closely linked with the sorghum Dwarf3 gene, an auxin transporter and pleiotropic regulator of both leaf inclination angle and shoot height, influence leaf angle prior to an effect on shoot height. Furthermore, variability in composite phenotypes that measure overall shoot architecture, such as shoot compactness, is regulated by loci underlying component phenotypes like leaf angle. As such, depth imaging is an economical and rapid method to acquire shoot architecture phenotypes in agriculturally important plants like sorghum to study the genetic basis of complex traits.

BdCESA7, BdCESA8, and BdPMT utility promoter constructs for targeted expression to secondary cell-wall-forming cells of grasses

Deborah L. Petrik; Cynthia L. Cass; Dharshana Padmakshan; Cliff E. Foster; John P. Vogel; Steven D. Karlen; John Ralph; John C. Sedbrook

More Info

2016

Utility vectors with promoters that confer desired spatial and temporal expression patterns are useful tools for studying gene and cellular function and for industrial applications. To target the expression of DNA sequences of interest to cells forming plant secondary cell walls, which generate most of the vegetative biomass, upstream regulatory sequences of the Brachypodium distachyon lignin biosynthetic gene BdPMT and the cellulose synthase genes BdCESA7 and BdCESA8 were isolated and cloned into binary vectors designed for Agrobacterium-mediated transformation of monocots. Expression patterns were assessed using the beta-glucuronidase gene GUSPlus and X-glucuronide staining. All three promoters showed strong expression levels in stem tissue at the base of internodes where cell wall deposition is most active, in both vascular bundle xylem vessels and tracheids, and in interfascicular tissues, with expression less pronounced in developmentally older tissues. In leaves, BdCESA7 and BdCESA8 promoter-driven expression was strongest in leaf veins, leaf margins, and trichomes; relatively weaker and patchy expression was observed in the epidermis. BdPMT promoter-driven expression was similar to the BdCESA promoters expression patterns, including strong expression in trichomes. The intensity and extent of GUS staining varied considerably between transgenic lines, suggesting that positional effects influenced promoter activity. Introducing the BdPMT and BdCESA8 Open Reading Frames into BdPMT and BdCESA8 utility promoter binary vectors, respectively, and transforming those constructs into Brachypodium pmt and cesa8 loss-of-function mutants resulted in rescue of the corresponding mutant phenotypes. This work therefore validates the functionality of these utility promoter binary vectors for use in Brachypodium and likely other grass species. The identification, in Bdcesa8-1 T-DNA mutant stems, of an 80% reduction in crystalline cellulose levels confirms that the BdCESA8 gene is a secondary-cell-wall-forming cellulose synthase.

FUSCA3 activates triacylglycerol accumulation in Arabidopsis seedlings and tobacco BY2 cells

Meng Zhang; Xia Cao; Qingli Jia; John Ohlrogge

More Info

2016

Triacylglycerol (TAG) is the main storage lipid in plant seeds and the major form of plant oil used for food and, increasingly, for industrial and biofuel applications. Several transcription factors, including FUSCA3 (At3g26790, FUS3), are associated with embryo maturation and oil biosynthesis in seeds. However, the ability of FUS3 to increase TAG biosynthesis in other tissues has not been quantitatively examined. Here, we evaluated the ability of FUS3 to activate TAG accumulation in non-seed tissues. Overexpression of FUS3 driven by an estradiol-inducible promoter increased oil contents in Arabidopsis seedlings up to 6% of dry weight; more than 50 fold over controls. Eicosenoic acid, a characteristic fatty acid of Arabidopsis seed oil, accumulated to over 20% of fatty acids in cotyledons and leaves. These large increases depended on added sucrose, although without sucrose TAG increased 3-4 fold. Inducing the expression of FUS3 in tobacco BY2 cells also increased TAG accumulation, and co-expression of FUS3 and diacylglycerol acyltransferase 1 (DGAT1) further increased TAG levels to 4% of dry weight. BY2 cell growth was not altered by FUS3 expression, although Arabidopsis seedling development was impaired, consistent with the ability of FUS3 to induce embryo characteristics in non-seed tissues. Microarrays of Arabidopsis seedlings revealed that FUS3 overexpression increased expression of a higher proportion of genes involved in TAG biosynthesis than genes involved in fatty acid biosynthesis or other lipid pathways. Together these results provide additional insights into FUS3 functions in TAG metabolism and suggest complementary strategies for engineering vegetative oil accumulation. This article is protected by copyright. All rights reserved.

Pages