Conversion

Share

GLBRC's Conversion Research Area

Conversion

Research team achieves concentrated stream of sugars, cost savings

GLBRC Conversion research aims to increase the quantity, diversity, and efficiency of energy products derived from plant biomass. Researchers focus on improving biological and chemical methods to convert plant material into advanced biofuels or valuable chemicals that can replace petroleum. Basic research discoveries that enhance the efficiency and sustainability of biomass conversion can break down barriers to developing economically viable biofuels technologies.

Conversion Leadership

Scientific Director, Conversion Lead

Landick is an expert on structure, function and regulation of RNA polymerase, the central engine of gene expression. His work spans disciplines from single-molecule biochemistry to genome-scale mechanisms of gene regulation, and includes devising the first single-molecule observation of nucleic...

Conversion Lead

Hegg’s research team focuses on the variety of ways that nature uses metals to activate and/or produce small molecules such as O2, H2, NO, and H2O2.  In pursuit of this goal, his lab utilizes a combination of mechanistic enzymology, molecular...

Project Overview

Stacks of petri dishes in the Currie Lab

Within the Conversion group, researchers apply a combination of synthetic biology, directed evolution, systems biology, and computational modeling approaches to accelerate the rate and yield of microbial conversion of biomass to fuels. Microbial efforts focus on well-established models and biofuel-producing organisms to identify key genes and pathways that may illuminate opportunities for strain improvement. Chemical routes focus on direct catalytic conversion of biomass-derived sugars and lignin into liquid transportation fuels and/or high-value chemicals.

Specific Conversion projects fall in three categories:

  • Engineering microbe strains to enhance stress tolerance and improve conversion efficiency of sugars to biofuels
  • Developing flexible routes to biofuel production that can be adapted to diverse biomass feedstocks
  • Producing light-driven and lignin-derived advanced biofuels, and using catalytic conversion to convert biomass to biofuels and value-added chemicals

 

Conversion Publications

Microbes in the energy grid

James Tiedje; Timothy Donohue

More Info

2008

The current surge in food and fuel prices has sounded an alarm showing why providing a sustainable global energy supply and minimizing climate change are arguably two of the greatest challenges facing 21st-century society. With adequate research and proper implementation, the diverse and often unseen inhabitants of the microbial world--bacteria, yeasts, fungi, and archaea--can help address these challenges.

Pages