GLBRC's Conversion Research Area


Research team achieves concentrated stream of sugars, cost savings

GLBRC Conversion research aims to increase the quantity, diversity, and efficiency of energy products derived from plant biomass. Researchers focus on improving biological and chemical methods to convert plant material into advanced biofuels or valuable chemicals that can replace petroleum. Basic research discoveries that enhance the efficiency and sustainability of biomass conversion can break down barriers to developing economically viable biofuels technologies.

Conversion Leadership

Scientific Director, Conversion Lead

Landick is an expert on structure, function and regulation of RNA polymerase, the central engine of gene expression. His work spans disciplines from single-molecule biochemistry to genome-scale mechanisms of gene regulation, and includes devising the first single-molecule observation of nucleic...

Conversion Lead

Hegg’s research team focuses on the variety of ways that nature uses metals to activate and/or produce small molecules such as O2, H2, NO, and H2O2.  In pursuit of this goal, his lab utilizes a combination of mechanistic enzymology, molecular...

Project Overview

Stacks of petri dishes in the Currie Lab

Within the Conversion group, researchers apply a combination of synthetic biology, directed evolution, systems biology, and computational modeling approaches to accelerate the rate and yield of microbial conversion of biomass to fuels. Microbial efforts focus on well-established models and biofuel-producing organisms to identify key genes and pathways that may illuminate opportunities for strain improvement. Chemical routes focus on direct catalytic conversion of biomass-derived sugars and lignin into liquid transportation fuels and/or high-value chemicals.

Specific Conversion projects fall in three categories:

  • Engineering microbe strains to enhance stress tolerance and improve conversion efficiency of sugars to biofuels
  • Developing flexible routes to biofuel production that can be adapted to diverse biomass feedstocks
  • Producing light-driven and lignin-derived advanced biofuels, and using catalytic conversion to convert biomass to biofuels and value-added chemicals


Conversion Publications

Effect of increased fuel volatility on CDC operation in a light-duty CIDI engine

Michael A. Groendyk; David A. Rothamer

More Info


Alternative diesel fuels derived from biomass can vary significantly in volatility compared to their petroleum-derived counterparts, and their appropriate utilization is contingent on their compatibility with existing engine infrastructure. To investigate this compatibility, experiments were carried out to study the effect of fuel volatility on conventional diesel combustion (CDC) performance under a wide range of in-cylinder thermodynamic conditions at start of injection (SOI). Fuels of matched reactivity (i.e., cetane number (CN)) and varying volatility were produced by blending binary mixtures of 2,6,10-trimethyldodecane (farnesane) and 2,2,4,4,6,8,8-heptamethylnonane, octane number primary reference fuels (PRF), and cetane number secondary reference fuels (SRF). Nine fuel blends were tested in total, consisting of 3 volatility characteristics at 3 reactivity levels. Five engine operating conditions were utilized, ranging from 14.7–29 kg/m3 and 980–1120 K in-cylinder density and temperature at SOI. Testing was performed in a single-cylinder GM 1.9 L diesel engine. Only small differences in ignition delay (ID), in-cylinder pressure, and heat release rate (HRR) were observed between fuels of matched CN, regardless of their volatility. An analysis of the spray breakup and mixture formation process indicated that there were only small variations in ambient air entrainment and jet temperature between fuel blends, in agreement with the observed combustion behavior.

Functionality and molecular weight distribution of red oak lignin before and after pyrolysis and hydrogenation

Daniel J. McClelland; Ali Hussain Motagamwala; Yanding Li; Marjorie R. Rover; Ashley M. Wittrig; Chunping Wu; Scott Buchanan; Robert C. Brown; John Ralph; James A. Dumesic; George W. Huber

More Info


Genome sequence and physiological analysis of Yamadazyma laniorum f.a. sp. nov. and a reevaluation of the apocryphal xylose fermentation of its sister species Candida tenuis

Max A.B. Haase; Jacek Kominek; Quinn K. Langdon; Cletus P. Kurtzman; Chris T. Hittinger

More Info


Xylose fermentation is a rare trait that is immensely important to the cellulosic biofuel industry, and Candida tenuis is one of the few yeasts that has been reported with this trait. Here we report the isolation of two strains representing a candidate sister species of C. tenuis. Integrated analysis of genome sequence and physiology suggested the genetic basis of a number of traits, including variation between the novel species and C. tenuis in lactose metabolism due to the loss of genes encoding lactose permease and β-galactosidase in the former. Surprisingly, physiological characterization revealed that neither the type strain of C. tenuis nor this novel species fermented xylose in traditional assays. We reexamined three xylose-fermenting strains previously identified as C. tenuis and found that these strains belong to the genus Scheffersomyces and are not C. tenuis. We propose Yamadazyma laniorum f.a. sp. nov. to accommodate our new strains and designate its type strain as yHMH7T ( = CBS 14780 = NRRL Y-63967). Furthermore, we propose the transfer of Candida tenuis to the genus Yamadazyma as Yamadazyma tenuis comb. nov. This approach provides a roadmap for how integrated genome sequence and physiological analysis can yield insight into the mechanisms that generate yeast biodiversity.

Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production

David Peris; Ryan V. Moriarty; Wiliam G. Alexander; EmilyClare Baker; Kayla Sylvester; Maria Sardi; Quinn K. Langdon; Diego Libkind; Qi-Ming Wang; Feng-Yan Bai; Jean-Baptiste Leducq; Guillaume Charron; Christian R. Landry; Jose P. Sampaio; Paula Goncalves; Katie E. Hyma; Justin C. Fay; Trey K. Sato; Chris T. Hittinger

More Info


Background: Lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects have investigated lignocellulosic biomass fermentation by the baker's yeast Saccharomyces cerevisiae. Most projects have taken synthetic biological approaches or have explored naturally occurring diversity in S. cerevisiae to enhance stress tolerance, xylose consumption, or ethanol production. Despite these efforts, improved strains with new properties are needed. In other industrial processes, such as wine and beer fermentation, interspecies hybrids have combined important traits from multiple species, suggesting interspecies hybridization may also offer potential for biofuel research. Results: To investigate the efficacy of this approach for traits relevant to lignocellulosic biofuel production, we generated synthetic hybrids by crossing engineered xylose fermenting strains of S. cerevisiae with wild strains from various Saccharomyces species. These interspecies hybrids retained important parental traits, such as xylose consumption and stress tolerance, while displaying intermediate kinetic parameters and, in some cases, heterosis (hybrid vigor). Next, we exposed them to adaptive evolution in Ammonia Fiber Expansion (AFEX)-pretreated Corn Stover Hydrolysate (ACSH) and recovered strains with improved fermentative traits. Genome sequencing showed that the genomes of these evolved synthetic hybrids underwent rearrangements, duplications, and deletions. To determine whether the genus Saccharomyces contains additional untapped potential, we screened a genetically diverse 65 collection of more than 500 wild, non-engineered Saccharomyces isolates and uncovered a wide range of capabilities for traits relevant to cellulosic biofuel production. Notably, Saccharomyces mikatae strains have high innate tolerance to hydrolysate toxins, while some Saccharomyces species have a robust native capacity to consume xylose. Conclusions: This research demonstrates that hybridization is a viable method to combine industrially relevant traits from diverse yeast species and that members of the genus Saccharomyces beyond S. cerevisiae may offer advantageous genes and traits of interest to the lignocellulosic biofuel industry.

Increasing the revenue from lignocellulosic biomass: maximizing feedstock utilization

David M. Alonso; Sikander Hakim; Shengfei Zhou; Wangyun Won; Omid Hosseinaei; Jingming Tao; Valerie Garcia-Negron; Ali H. Motagamwala; Max A. Mellmer; Kefeng Huang; Carl J. Houtman; Nicole Labbe; David P. Harper; Christos Maravelias; Troy Runge; James A. Dumesic

More Info


The production of renewable chemicals and biofuels must be cost- and performance- competitive with petroleum-derived equivalents to be widely accepted by markets and society. We propose a biomass conversion strategy that maximizes the conversion of lignocellulosic biomass (up to 80% of the biomass to useful products) into high-value products that can be commercialized, providing the opportunity for successful translation to an economically viable commercial process. Our fractionation method preserves the value of all three primary components: (i) cellulose, which is converted into dissolving pulp for fibers and chemicals production; (ii) hemicellulose, which is converted into furfural (a building block chemical); and (iii) lignin, which is converted into carbon products (carbon foam, fibers, or battery anodes), together producing revenues of more than $500 per dry metric ton of biomass. Once de-risked, our technology can be extended to produce other renewable chemicals and biofuels.